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Abstract 

In a tokamak divertor, steep gradients in the density and temperature profiles are usually established with a scale length 
that is often shorter than the mean-free path of energetic electrons. The electron flux is then non-local in nature, being 
determined not only by local density and temperature gradients but by integrals of these quantities over an extended region 
in space. In the present work, such non-local expressions for the electron particle and heat fluxes are derived, generalizing 
earlier work to include the effects of walls bounding the plasma. The results are found to be in excellent agreement with a 
numerical solution of the full kinetic equation, if the temperature falls off rapidly near the wall. In the opposite limit of a 
nearly isothermal plasma, a comparison with a variational calculation of the particle flux is presented, showing less 
satisfying agreement. 
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1. Introduction 

The Spitzer-H~irm expression for the electron heat 
conductivity [1,2] becomes invalid already at quite small 
values of the mean-free path of thermal particles A (when 
it exceeds 2 . 1 0  3 times the macroscopic scale length L) 
[3]. The reason is that the energy is mostly carried by quite 
energetic electrons, whose mean-free path is much longer 
A. On the other hand, plasmas in which 2 • 10 -3 < A l L  < 1 

are quite common. This has prompted a large number of 
attempts to generalize the Spitzer-H~irm formula to in- 
clude plasmas in this range of A l L  [4-7]. The heat flux is 
then not determined by the local temperature and density 
gradients alone, but becomes non-local in character. A 
particularly successful approach to this problem is fur- 
nished by the high Z approximation [5-7]: If the ion 
charge Z is taken to be sufficiently large, pitch-angle 
scattering is the dominant collisional process. As a result, 
the distribution function becomes nearly isotropic, and the 
electrons diffuse rather than stream freely along the mag- 
netic field lines. Consequently, the kinetic equation can be 
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simplified, and with additional simplifications it can be 
solved to yield non-local expressions for the heat flux, 
which sometimes compare favorably with more accurate, 
numerical results. Such simple analytical expressions are 
of great value for, e.g., implementation in codes simulating 
the edge plasma in tokamaks. The tokamak scrape-off 
layer is generally in the above mentioned range of A/L ,  so 
the electron dynamics is usually governed by non-local 
effects. 

This problem is well recognized in the edge plasma 
community. In numerical edge simulations, artificial flux- 
limits are usually employed to prevent the conductive heat 
flux to exceed the free-streaming value. However, by their 
very nature, flux limits cannot properly describe the oppo- 
site situation, when the heat flux exceeds the Spitzer 
value. This is common in the tokamak divertor, where fast 
electrons from the midplane may dominate the heat flux, 
as observed directly in kinetic simulations [8], and mod- 
elled phenomenologically by Cohen and Rognlien [9]. It is 
also widely acknowledged that non-local electron transport 
is of significance for the interpretation of probe measure- 
ments in the tokamak divertor [8,10]. 

It is the purpose of the present paper to compare the 
earlier non-local formula of Krasheninnikov [7] for elec- 
tron particle and heat fluxes with a numerical solution of 
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the full kinetic equation for fast electrons, and to general- 
ize it to account for effects of material walls bounding the 
plasma. The existence of boundaries has been ignored in 
earlier treatments of non-local heat conduction (other than 
[9]), but is likely to be important in tokamaks since the 
divertor plates are usually situated near the region where 
temperature and density gradients are steep. The effect of 
the walls are described by new terms in the expressions for 
the heat and particle fluxes, which are calculated in Sec- 
tion 2, and persist even in a homogeneous background 
plasma. This enables a comparison with a more exact 
analytical solution found in Section 3. To our knowledge, 
it is the first analytic, kinetic treatment of this taking 
collisions consistently into account. In the last section our 
conclusions are summarized. 

2. Non-local expressions for particle and heat fluxes 

The kinetic equation for energetic electrons in one 
dimension is 

Of eE Of e E ( I _ x 2 )  o@ 
Xt;o-'-" £ -X m St, mc 

4rre4An [ 1 + Z 0 Of 
- m ~  /[ v 3 ~ X ( 1 - X - ) ~  X'" 

m 0 (  0 ~ ) ]  + - - - -  f +  T (1) v c98 

where f is the distribution function, v the velocity, X t: its 
component in the direction of the coordinate x (usually 
parallel to the magnetic field), m the electron mass, Ze and 
- e the ion and electron charges, respectively, T and n the 
electron temperature and density, A the Coulomb loga- 
rithm, and e denotes the sum of the kinetic and potential 
energies: e = my2~2 - e&, with ~b the electrostatic poten- 
tial. If Z>> 1, the electrons are frequently scattered ac- 
cording to the first term on the right-hand side, and a 
random walk takes place along x. Eq. ( l )  can thus be 
expected to reduce to a diffusion equation in this limit. 
Indeed, ordering the consecutive terms as 8: 8 e: 8 e: 1 : 8 2, 
where 8 << 1 is an expansion parameter, and expanding 
the distribution function, f=fo-t-fl - t - , f 2  . . . .  gives [5,7] 

O2.fo 1 O [ Of<,] 
- - + O r  2 7 O T e [ f ° + T ( Y ) - ~ f f ]  = 0 ,  (2) 

where dy-= [6(Z+ l)]l/2rre4An(x)dx. Here, we have 
used OJ})/O X = 0 from the zeroth-order part of Eq. (1), and 

.2 (3) 6 0/o 
L = - x  z + l  a~--7 

from the first-order equation, and taken the average over X 
in the next-order equation. In addition, the assumption 
e>> T (so that fo varies much faster with y than do n(y) 

or T(y)), already used in Eq. (1), is made to arrive at Eq. 
(2). The electrostatic potential 4, is assumed to be of the 
same order as T/e. 

In Ref. [7], an approximate solution to the kinetic Eq. 
(2) was found for the case of an infinite plasma. Repeating 
essentially the same analysis, it is possible to generalize 
the calculation to account for sheath boundary conditions 
at the walls bounding the plasma. We shall not reproduce 
the algebra here, but merely present the results. If the walls 
are situated at x = x~ and x = x 2, and the sheath potentials 
are UlT and u2T, respectively, the particle and heat fluxes, 
j and q, become: 

(~)~S(l)xl.fod3u:(j~)__(~,l) "(Z)77 
x 

5 ( Z + l ) m  -x, , 

i=o Po.v/2(gi) dx' 

+( PPo.5/e(gi)'/5'3/2(gi) l de4)] d ' ~ - ~ x , /  x ,  (4) 

with gi(x, x')=- go(x, 2x i -  x'), i = 1,2, and 

=- V . . ~ (g )  = £ 1 ~ ( 1  - ~ )  1/2 dsC£=r/t~ 

e x p - 7  d , ,  

5(z+ 1) 
go(x, x') =- 4T5(x, ) 

[j: ] x 6 r r e 4 A n ( x " ) r l / Z ( x " ) d x "  , (5) 

The Eqs. (4) and (5) are similar to those found in Ref. [7], 
apart from the terms involving g~ and g2, and the bound- 
ary terms 

4@/2n(x) 7 10T(x)  

"u ( Z +  l )m 

f,~(~u,~(x,) )'¢/2d'7 
~ [ g2(x 'x i )  l des 

ft e x p - u i , ~ r  # ui@(-ff-.,~ l ) ~/~5--1 

(6) 

which result from the use of the sheath boundary condi- 
tion. Note that these terms persist even if the density and 
temperature profiles are flat. The factor F(Z) in Eq. (4) 
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was added a posteriori to make the expression for the heat 
flux valid for any ion charge Z in the limit of small 
mean-free path. F(Z) is defined as 

1 + 1.59Z ~ + 0.59Z -2 
F(Z) 

= - 0 " 9 3 1 + 3 . 8 7  Z , + 1 . 3 2 Z - 2 '  
(7) 

and is almost, but not exactly, equal to unity for large Z, 
which reflects the circumstance that the high-energy ex- 
pansion (Eq. (1)) of the collision operator is only approxi- 
mate. 

Because of the various approximations employed in 
their derivation, it is not immediately clear how accurate 
Eqs. (4)- (7)  are. Additional justification by comparison 
with exact numerical solutions of the original Eq. (1), is 
therefore necessary. Such comparisons were published, 
e.g., in Refs. [6,7], and showed good agreement for slightly 
rippled temperature profiles as long as AlL < 0.1. It is, 
however, important to make the comparison for profiles 
where the density and temperature vary significantly, since 
this is usually the case in applications. The original Eq. (1) 
has three independent variables, and is therefore nontrivial 
to solve, even numerically. However, for the particular 
density and temperature profiles 

T(x )=  Tox 2/('+2`'), n(x)=no xO 2,~)/(.+2,~), x > 0 ,  

(s) 

the ratio of the mean-free path to the profile scale-length 
y = A/L = (T/2rre4An)(dT/dx) is constant, and self-sim- 
ilar solutions are possible [11]. One of the independent 
variables can then be eliminated, making the equation 
easier to solve. We have constructed numerical solutions, 
adjusting the electric field so as to make the particle flux 
vanish, and calculated the ensuing normalized heat flux for 
various values of Z, y, and oe. In order to compare the 
findings with the corresponding results from the non-local 
Eqs. (4)-(7),  we note first that the boundary terms vanish, 
since the temperature vanishes at the 'wall '  x = 0. In fact, 

the wall is infinitely many mean-free paths removed from 
the plasma, and is therefore ' invisible'  as far as the fast 
electrons are concerned. Next, we observe that the require- 
ment that the particle flux vanish 

j clc J n( x') { dT de4~ ~ 
T ~ [ P - I / 5 " 5 / 2  dx  ~ - P i/5.3/2 ~)dx '=0 

(9) 
implies that ~b vary with x in the same manner as T, i.e., 
qS(x) = ~box 2/(t+2~), and determines ¢bo. We substitute 
this expression for 4,(x) in the heat flux (Eq. (4)), and 
evaluate the integrals numerically and normalize to obtain 
the dimensionless heat flux Q = q/[nT(2T/m)l/2]. Table 
1 presents a comparison with the numerical results. The 
agreement is quite good, even for Z = 1, much better than 
one could have expected a priori. 

In practice, it is cumbersome to solve the integral 
equation j(q~) = 0 for the electrostatic potential ~b(x). It is 
therefore desirable to have an expression for the heat flux 
that only involves n(x) and T(x), and not ~b(x). In the 
limit of short mean-free path, O/Ox--+ O, Eq. (9) implies 
that the electric field is -deq~/dx = -5dT /dx ,  and its 
effect on the heat flux, as found from Eq. (4), is to reduce 
it by a factor of 6, 

F(Z) ~ a T ( x )  fX2n(x,) 
q = q 2 - q t  6rr 5 ( Z + l ) m  ~., 

dT 
XPo.v/z[g(x, x ' ) ] 7 -  7 d x ' ,  (10)  

d x  

To investigate the accuracy of this approximation for 
longer mean-free paths, we compare its predictions for the 
profiles (Eq. (8)) with the above results in Table 1. Again, 
the agreement is mostly good, but now there is some 
discrepancy for large y and or. 

3. Fast electrons close to a wall in a homogeneous 

Table l 
Comparison between the exact, numerically obtained, heat flux for the self-similar profiles (Eq. (8)), the analytical approximation (Eq. (4)) 
with the electric field adjusted to make the particle flux vanish, and the more approximate expression (Eq. (10)) 

o~=4 oe=8 

Eq. (4) Eq. (10) numerical Eq. (4) Eq. (10) numerical 

Z = 1 y = 0.001 0.0043 0.0043 0.0041 0.0043 0.0043 0.0041 
y 0.01 0.043 0.044 0.045 0.041 0.046 (/.038 
y -  0.1 0.27 0.21 0.27 0.071 1.41 0.13 

Z = 3 y = 0.001 0.0028 0.0027 0.0027 0.0027 I).0028 1/.01/27 
y = 0.01 0.028 0.029 0.029 0.026 0.028 11.026 
y =  0.1 0.20 0.16 0.21 0.11 0.67 0.11 

Z = 10 y = 0.001 0.0013 0.0013 0.0012 0.0013 0.0013 0.0012 
y = 0.01 0.013 0.013 0.013 0.012 0.013 1/.012 
3' = 0.1 0.11 0.10 0.12 0.082 (I.22 0.064 
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plasma 

If the temperature T(y)  is constant, a more rigorous 
analytical treatment of Eq. (2) is possible. In other words, 
it is possible to investigate kinetically the behavior of fast 
electrons close to a wall in a homogeneous, high Z, 
plasma. The purpose of such a calculation is to determine 
the electron flux as a function of the sheath potential. To 
our knowledge, earlier studies of this problem have merely 
stipulated the form of the incoming electron distribution 
function, e.g., to be a Maxwellian, never calculated it 
self-consistently. 

For an analytical treatment in the limit Z >> 1, e >> T 
and u>> l, where u = U / T  is the normalized sheath 
potential, we introduce normalized variables, w =-e/T,  
Z = y / T  2, g=f /n(m/2 , .n .T)3 /2e  ~,/r, in which Eq. (2) 

takes the form 

e -w + e  - w o 2 g  - 0 ,  (11) 
D[ g ] = w3 3w 0Z 2 

and the boundary conditions become g(w = O, z )=  1 
(since the distribution function approaches a Maxwellian at 
low energies), g(w = ~, z) < 0% g(w > u, z = 0) = 0, and 
g':(w < u, z = 0 ) =  0. It is now readily verified that the 
functional 

w[(0  a+w3(0 l  ] 
dw ] "~Z dw 

- "1o Ow w=odZ-Jo  dZjo g D [ g ] d w ,  (12) 

defined for functions g satisfying the boundary conditions, 
assumes its minimum for the particular function g satisfy- 
ing Eq. (11). But since 

fo~dZfo~wBD[g]dw 

= _ ( ~ O g  d z _  [~w3e wOg d w = 0 ,  
go 0w I..=o q Oz b=o 

(13) 

it follows from a comparison with the particle flux associ- 
ated with ft  (Eq. (3)), that 

j = - 4 n  3 I t ( Z +  l ) m  J rain J [ g ] .  (14) 

In other words, the minimum value of the variational form 
J[g] is equal to the particle flux to the wall within a 
multiplicative constant. A trial function which differs from 
the exact g by a small quantity O(3g) therefore gives a 
particle flux (Eq. (14)) with an error of only O(6~). 

We now proceed to seek a suitable trial function. A 
naive approach would be to substitute a reasonable func- 
tion satisfying the boundary conditions in Eq. (14), and 
evaluate the corresponding particle flux directly. In a more 

accurate method [12], instead of guessing the function g 
itself, one postulates the shape of its level curves, and then 
finds the optimum g that is constant on these curves. If we 
label the family of level curves by a parameter 0 < n < 1, 
then g(w, z) = gin(w,  z)], where the function n(w, z) is 
still unknown. The functional J[ g] can then be written as 

j0 = aT, (15) 

dz 
X - -  (16) 

Ion~Owl 

The Euler-Lagrange equation for minimizing (Eq. (15)) 
now implies that Og/& 1 = const . /p(n).  Integrating this 
relation and requiring that g(0) = 0, g ( l )  = 1, gives 

J [ g ] = ( f o l d n / p ( n ) )  ' (17) 

If we provide a guess for the shape of the level curves 
r/(w, z), Eq. (17) now yields the minimum value of J[g], 
given that g is constant on these curves. 

A simple trial function n(w, z) satisfying the boundary 
condit ions\  is w = (1 - n)(u + zk /hn) ,  where k > 1 and 
h are free parameters which may be varied so as to 
minimize J[g]. With this choice of n(w, z), the function 
p(r/) becomes 

P ( n )  (hn)'/kku ~ ~ exp[ (n  - l ) ( u  + s)]  

[ ~2('-n)5"3 ' ] as 
× sl/k I + . . . .  - l / k  

(An)2/k s 1 + s / n u  

(18) 

to the lowest order in 1 /u  << 1. This result is now to be 
inserted in Eq. (17), which should be minimized with 
respect to k and A. The result of a numerical minimization 
is shown in Fig. 1. Dots representing the numerically 

0.1 

0.01 

OOOl 
4 6 8 10 12 

Sheath Potential 

Fig. 1. The normalized electron particle flux J[g] obtained 
variationally (dots), and the c u r v e  J[g] = 1.1 u 3/2 exp( - u) corre- 
sponding to Eq. (19). 
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obtained min J[g] for various values of u are shown, 
along with the curve 1.1 u 3/2 e x p ( - u ) .  This curve appar- 
ently produces a close fit to the dots, so the flux of 
electrons to the wall (Eq. (14)) can be written as 

T u 3 / 2 e  u 
j ( u )  ,,~ - 1.4n ( Z +  1)--~ " (19) 

Equating this expression to the ion flux, determined by 
the Bohm sheath criterion, gives the sheath potential u in a 
high Z plasma. 

The result (Eq. (19)) provides an opportunity to esti- 
mate the limits of the high Z approximation itself: Far 
from the wall the distribution is Maxwellian, and close to 
the wall the distribution function is devoid of high-energy 
particles travelling away from the wall. At intermediate 
distances from the wall, pitch-angle scattering fills in this 
void. The high-energy tail of the distribution is therefore 
depleted, and the particle flux should be smaller than that 
which would result from a Maxwellian, J <JM = 
n(T/27rm)l/2e -u. Combined with Eq. (19), this inequal- 
ity gives a lower bound for the ion charge Z, 

Z >  12u 3, (20) 

which, unfortunately, is very high for realistic values of 
the sheath potential u. This constraint is in stark contrast 
with the fine agreement with similarity solutions we saw 
for arbitrary Z, and demonstrates the difficulties with the 
high Z approximation in the vicinity of walls. 

4. Conclusions 

The main result of this paper is the derivation of a 
non-local formula (Eqs. (4)-(7)), to be used in numerical 
edge codes, for the electron particle and heat fluxes in a 
plasma bounded by walls with Bohm sheath boundary 
conditions. The main simplifying assumption underlying 
the calculation is that of high ion charge, Z>> I. Even 
though this condition is not satisfied in a typical fusion 
edge plasma, the resulting heat flux appears to be surpris- 
ingly accurate if the plasma temperature falls off rapidly 
near the walls. Indeed, as long as A l L  < 0.1, the agree- 
ment with numerical results (Table 1) is excellent, even 
though the usual short mean-free path theory fails badly. 
The agreement is good even for Z =  1, which, strictly 
speaking, is beyond the validity of the assumptions made 
to simplify the problem. 

Although the heat flux (Eqs. (4)-(7)) seems to be a 
good approximation and may be suitable for implementing 
in numerical edge computations, we observe that the non- 
local particle flux (which is important, e.g., for probe 
measurements [10]), calculated under similar assumptions, 
scales incorrectly in the limit of small density and tempera- 
ture gradients. In a homogeneous background plasma, the 
particle flux to the wall is predicted by Eq. (6) to scale as 

j ~ u S / 2 f f r l 3 / 2 d r l f f e x p ( - , ~ r l U ) ( , ~ 5 - i )  -'/~- dsC 

= ( ~ - / s ) ~ / : u e  --', , ,  > >  l ,  ( 21 )  

in disagreement with Eq. (19). 
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